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There has been an increasing interest in properties of complex networks, such as small-world property,
power-law degree distribution, and network transitivity which seem to be common to many real world net-
works. In this study, a useful community detection method based on non-negative matrix factorization �NMF�
technique is presented. Based on a popular modular function, a proper feature matrix from diffusion kernel and
NMF algorithm, the presented method can detect an appropriate number of fuzzy communities in which a node
may belong to more than one community. The distinguished characteristic of the method is its capability of
quantifying how much a node belongs to a community. The quantification provides an absolute membership
degree for each node to each community which can be employed to uncover fuzzy community structure. The
computational results of the method on artificial and real networks confirm its ability.
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I. INTRODUCTION

Modularity or community structure is a natural character-
istic in many real networks such as social networks �1,2�,
technological networks �3�, and biological networks �4–7�.
The detection of community structure in complex networks
can enhance the insight into the intrinsical structure of net-
works and then has become a key problem in the study of
networked systems.

Although the community structure, as a densely con-
nected subgraph which sparsely connects with other parts of
a network, is easily understood, giving out a deterministic
definition is a nontrivial problem for the complexity of net-
works. A huge number of methods intended to detect the
community structure in complex networks have been re-
cently reviewed in �8� and evaluated in �9�.

Recently, a concept of modularity Q introduced by New-
man and Girvan �10� has been broadly used as a valid mea-
sure for community structure. In detail, given an undirected
graph or network G�V ,E� consisting of the node set V and
the edge set E, its adjacency matrix is denoted as A
= �aij�n�n, where aij =1, if nodes i and j are connected and
otherwise aij =0. Let n be the size of the node set. The modu-
larity function Q is defined as

Q�Pk� = �
c=1

k �L�Vc,Vc�
L�V,V�

− �L�Vc,V�
L�V,V� �

2	 , �1�

where Pk is a partition of the nodes into k groups and
L�V� ,V��=�i�V�,j�V�aij. The modularity function provides a
way to determine if a partition is valid to decipher the com-
munity structure in a network. Maximization of the modular-
ity function Q over all the possible partitions of a network is
now a highly effective method �8–10�. Based on the modu-
larity function, many methods have been developed, among
which a recent breakthrough is made by Newman �11� in

which a fast and accurate spectral algorithm has been devel-
oped.

An important case in community detection is that some
nodes may not belong to a single community and then plac-
ing them into more than one group is more reasonable. Such
nodes may mean a “fuzzy” categorization and take a special
role such as signal transduction in biological networks. But
the overlap of community structure cannot be detected by
most existing partitioning algorithms and hierarchical clus-
tering methods. Only a few community-detection methods
can achieve this point �12–14�. Another phenomenon is that
some nodes located on the border between two communities
are hard to be classified into any community. Such nodes are
considered as unstable nodes in Ref. �15� where the authors
design an algorithm to identify the unstable nodes lying be-
tween two communities. Figure 1 shows a typical example
where node 11 should be classified into two communities
intuitively and node 6 lies exactly between two clear com-
munities.

Here, we introduce a new community detection algorithm
which can uncover meaningful fuzzy community structure in
complex networks. The novel method can quantify the de-
gree that each node belongs to each community. Based on
the difference of membership degrees, we can uncover fuzzy
communities in which a node may belong to more than one
community. The algorithm does not need any prior knowl-
edge about the number of communities and can give an ap-
propriate number by maximizing the modular function. Ap-
plying the presented method to several artificial and real
networks shows its capability.

II. NON-NEGATIVE MATRIX FACTORIZATION

Our research is motivated by the NMF technique, a
machine-learning algorithm based on decomposition by parts
that can uncover localized features in feature space �16,17�.
The technique decomposes the feature matrix into two ma-
trices with non-negativity constraints. And it was adapted to*zsh@amss.ac.cn
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work as a clustering algorithm and dimensionality reduction
technique in many fields �18,19�.

Feature matrix. How should we determine a feature ma-
trix to store the topological information of a network? Obvi-
ously, many approaches can be used. Here we employ the
diffusion kernel �20� which has been comprehensively used
in various fields �21�. Given an undirected, unweighted
graph �network� G= �V ,E�. The �opposite� Laplacian of this
network is the following matrix:

Lij = 
1, for i � j

− di, for i = j

0, otherwise,

�2�

where i� j means that the ith and jth nodes are connected by
an edge, and di is the degree of node i. The exponential of
matrix L is defined as

K � exp��L� = lim
n→�

�1 +
�L

n
�n

, �3�

where � is a positive constant to control the degree of diffu-
sion. The resulting matrix K is symmetric and positive defi-
nite. It is naturally a valid kernel, which can capture the
long-range relationship between nodes induced by the local
structure of the network. As to the efficient computation of
the exponential, many algorithms have been developed �22�.
For example, the Padé approximation with scaling and squar-
ing has been used to compute in MATLAB soft �23�. A simi-
larity matrix B can be obtained by normalizing the kernel
matrix K in such a way:

Bij =
Kij


KiiKjj

. �4�

General approach. Feature data from a network is repre-
sented as a single matrix V of size n�m �in our study, it
represents the symmetric matrix B, and so n=m�. Generally,
the column and row represent two different attributes, but
here column and row both correspond to the similarities from
one node to all nodes because of the symmetry of V. The

major analytical method applied here, NMF, is an approxi-
mate factorization of the matrix V into a pair of matrices W
and H,

V � W · H . �5�

Note that this is only an approximate factorization, not an
exact one �16,17�. That none of the matrices in this equation
is permitted to have negative entries �17� is the unique fea-
ture of the NMF algorithm. The factorization is carried out
with a particular rank k so that W is of dimension n�k and
H is k�m. Moreover, the factorization could be viewed as a
representation of the data in a new space of lower dimen-
sionality �k�. Generally, there is a dual interpretation of de-
composition. More interestingly, since the feature matrix V is
symmetric, so V=VT�HTW. W and HT can be considered
equivalent in a scale view. This has also been shown experi-
mentally, so here we always employ W to determine the final
clustering partition.

Implementation of NMF. The NMF algorithm is coded
using the MATLAB version 6.5 �23�. It is the key of the algo-
rithm to iteratively update matrices W and H to improve the
approximation to V while maintaining non-negative matrix
entries throughout �17�. For a given value of the NMF di-
mensionality k, the algorithm starts with random matrices W
and H. The initial matrices for W and H with random entries
are chosen from a normal distribution with mean 0, variance
1, and standard deviation 1. If an entry of the matrix is nega-
tive we take its absolute value to replace it. The two matrices
are iteratively updated using the following rules:

Hau ← Hau
�WTV�au

�WTWH�au
, �6�

Wia ← Wia
�VHT�ia

�WHHT�ia
�7�

which minimize the root-mean-square �rms� error �E
= �V−WH�2� between the actual data V and the reduced-
dimension reconstruction of the data WH. Because the up-

FIG. 1. �Color online� A toy network with one unstable node �6� and one overlapping node �11� and its corresponding W entries. The
three curves �circle, square, and triangle� represent the corresponding values of every node in every column of W.
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date rules are multiplicative, initial non-negative matrices re-
main non-negative for all the iterations. Furthermore, E is
nonincreasing under the above update rules. Iteration contin-
ues until the absolute change of rms error is �10−5 in an
iteration or the total iterations attain a certain number, for
example 200 steps. The update rules are a kind of gradient
descent, and thus can only converge to a local minimum. For
a k, given initial matrices W and H, we can find a good
approximate factorization by running the iteratively updating
procedure and stop criterion.

The factorization can be considered that each data vector
v �the row of V� is approximated by a linear combination of
the rows of H weighted by the components of w �the row of
W�: v=wH. Therefore H can be regarded as a basis that is
optimized for the linear approximation of the feature data in
V �16,17�. We can see that relatively few basis vectors are
used to represent many data vectors and the entries of w
represent the weight of every basis vector to produce the data
vector v. Given a factorization V�WH, we can use matrix W
to group the n objects into k clusters. The entries in W can be
viewed as the memberships of every node to each commu-
nity. These memberships are absolute �i.e., not relative� and
denote degrees of belonging or typicality. Unlike the fuzzy
c-mean algorithm �14�, the membership value of a node in
one community does not depend on its membership values in
other communities. Therefore a node can have high member-
ship degrees in several communities and can also have very
low membership degrees in all communities. So NMF can
achieve our ideas about fuzzy or overlapping community
structure.

Each object i will be placed into a cluster j* if the wij* is
the largest entry in row i, i.e., j*=arg maxjwij, so that the
NMF algorithm can determine a partitioning clustering. We
observed that one node may have strong association with
more than one group which can be reflected by the associa-
tion matrix W. So if the second largest association value is
still large relative to the largest one, it means that the corre-
sponding node is an unstable node. We introduce the follow-
ing rule to depict the stability of nodes �called stable index,
S�:

Si =
wij*

wij**
, �8�

where j**=arg maxj,j�j*wij. We can find that the smaller the
Si, the more unstable is the node i. Figure 1 shows the cor-
responding wij values for every node i �i=0, . . . ,15� and j
=1,2 ,3. It is easy to find that node 6 and 11 have two promi-
nent w values, respectively, and naturally very smaller S val-
ues. So, by our method we can uncover that these two nodes
belong to two communities, respectively.

An important problem is how we can determine the value
of k. Taking into account that the NMF method can produce
hard clustering results, we employ an objective function such
as Q modularity function or local modularity LQ measure
�24� to determine an appropriate k value. Since NMF starts
with random matrices, different implementations may return
different results. We overcome this by repeating the algo-

rithm for certain times, for example, 50 times, and select one
solution using Q for a given k.

III. EXPERIMENT

We test the performance of the method proposed here by
applying it to a class of artificial networks and to three real-
world networks. Well-tried results and comparison with the
known “GN algorithm” �25� and the new fast spectral algo-
rithm �11� show the usefulness of the proposed method. And
if there is no special mention, we choose �=0.1 in the fea-
ture matrices in our study.

A. Computer-generated networks

The NMF method for basic hard clustering is applied to a
large set of artificial modular networks to compare with GN
algorithm �25� and the spectral algorithm developed by New-
man �11�. The experiment designed by Girvan and Newman
�25� has been broadly used to test community-detection al-
gorithms �25–29� in recent years. In this test, each network
has 128 nodes, which are divided into four communities of
size 32 each. Edges are placed randomly with two fixed ex-
pectation values so as to keep the average degree of a node to
be 16 and the average z̄out of each node’s edges connecting to
nodes of other modules. Obviously, as z̄out increases, the
classification of nodes becomes more and more difficult for
any method.

The proposed method can effectively uncover the known
four communities, i.e., k=4. If a node in a given community
is classified into a detected group that contains the most
nodes of this community, we consider it as a correctly clas-
sified node. Figure 2 shows the fraction of nodes that are
classified into their correct communities with respect to z̄out
by our method, the GN algorithm, and the spectral algorithm.
Our method has extremely better performance than the GN
algorithm and comparative results with the spectral algo-

FIG. 2. Test of the method on computer-generated networks
with known community structure and comparison with the GN al-
gorithm and the spectral algorithm. It is a plot of the fraction of
nodes correctly classified in computer-generated networks with re-
spect to z̄out. Each point is an average over 100 realizations of the
networks.
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rithm. For instance, for 100 random networks with z̄out=7,
on an average 96.2% nodes are classified correctly by our
method, while only about 61.9% nodes by the GN algorithm
and about 95.0% nodes by the spectral algorithm.

B. The karate club network

The famous karate club network analyzed by Zachary
�30� is widely used as a test example for methods of detect-
ing communities in complex networks �8,25,26,31,32�. The
network consists of 34 members of a karate club as nodes
and 78 edges representing friendship between members of
the club which was observed over a period of two years. Due
to a disagreement between the club’s administrator and the
club’s instructor, the club split into two smaller ones. The
question concerned is if we can uncover the potential behav-
ior of the network, detect the two communities or multiple
groups, and particularly identify which community a node
belongs to. Figures 3 and 4 show the network and its corre-
sponding results. Our NMF method employed as a hard-
clustering algorithm divides the network into two groups of
roughly equal size and produces a completely consistent split
with the actual division of the original club. This indicates

that the application of our method to the empirically ob-
served network can uncover its real situation, and further we
can detect some nodes belonging to more than one commu-
nity which constitute the fuzzy boundaries of two communi-
ties. The three most unstable nodes including nodes 9, 3, 20
are depicted in the innermost bold loop region. These three
nodes are exactly in-between nodes, between the two smaller
clubs. This means that such members have good friendship
with the two clubs at the same time. Also we can uncover
more such nodes with a different degree of unstability ac-
cording to the sorted S values. The five nodes with the five
lowest S values are shown in the dotted loop regions. Figure
4 shows the change trend of stable index from which we can
see that there is a distinct jump point which determines the
outermost loop region consisting of eight nodes.

C. The scientific collaboration network

The scientific collaboration network collected by Girvan
and Newman �25� and examined in �25,26� is also tested
here. This network is a weighted network which consists of
118 nodes �scientists�. The peak for scientific collaboration
network is at k=7, Q=0.7172 �see Fig. 5�. Figure 6 shows
the fuzzy community structure detected by the proposed
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FIG. 4. The sorted S values for the karate club network. The
inline small figure is plotted with larger S bound.

FIG. 3. �Color online� The fuzzy community
structure of the karate club network detected by
the proposed method.
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FIG. 5. Q values vs k of our method for scientific collaboration
network.

ZHANG, WANG, AND ZHANG PHYSICAL REVIEW E 76, 046103 �2007�

046103-4



method which is visually very reasonable. Furthermore, four
regions �including 14 overlapping nodes enclosed by four
circles in Fig. 6� are detected according to their S values.
These nodes generally locate on the borders of two or more
communities and represent authors with multiple research
interests or cross-discipline background. Maybe such points
play a role in bridging two or more communities in a com-
plex network of other types. The ability to find such nodes is
a distinguished characteristic of our method.

Figure 7 shows the sorted stable index for scientific col-
laboration network. In view of the complexity of networks,
giving out a criterion for choosing the threshold of S is a
hard problem. In other words, the results of our method de-
pend on the choice of S. When applied to real networks, the
choice of S should rely on several trials and experiential
knowledge. For example, we choose S=2.4 in the scientific
collaboration network.

D. A large-scale protein interaction network

Large-scale yeast nonredundant �no self-interaction and
repeated interaction� protein interaction data are obtained
from �33� to construct a yeast protein interaction network
which contains 2708 proteins �nodes� and 7123 interactions
�edges�. We apply the present method to this large-scale net-
work to show its performance in uncovering communities
�functional modules�. The biological significance of these
modules can be evaluated based on known function annota-
tion and protein complexes in MIPS �Munich Information

Center for Protein Sequences� database �34�. We can deter-
mine k �the number of communities in the network� based on
the Q or LQ in a bisection manner. Here, we focus on check-
ing the ability of the present method to detect fuzzy modules
in large-scale networks, so we assume k is known. When k
=200, we obtained 197 modules among which 196 ones are
of sizes from 3 to 55 as well as a big one with 140 proteins
�three small ones with two proteins are deleted�. The nodes
with 15% lowest S values are selected as overlapping nodes
which constitute the fuzzy boundaries of overlapping mod-
ules. Figure 8 illustrates three fuzzy modules. The overlap-
ping proteins in them may take special roles in signal trans-
duction or communication among different functional
modules.

Like most other community-detection algorithms, the
main computational time of our method lies in searching a
proper k. Besides this, the core computation is spent on the
update rules where the matrix computation is relatively in-
tense. The NMF method has the worse-case time complexity
of O�hkn2� for a given k, where n is the number of nodes in
the network and h is the number of iterations required until
convergence. The computational time scales roughly qua-
dratically as a function of the number of nodes n. Experi-
mentally, computing an approximate factorization of feature
matrix is fast and can be used to deal with networks with
several thousands of nodes in several minutes. For the choice
of k, the method can be easily performed in a parallel man-
ner. Hence it is estimated that the NMF method can be ap-

FIG. 6. �Color online� The fuzzy community structure of scien-
tific collaboration network obtained by our method.
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FIG. 7. The sorted S values for scientific collaboration
network.

FIG. 8. �Color online� Three fuzzy modules
�module-specific nodes are denoted by different
shapes� have been shown with three overlapping
proteins YAR044W, YAR042W and YPR041W
�labeled in circles�.
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plied to real large networks with about tens of thousands of
nodes.

IV. CONCLUSION AND DISCUSSION

In this paper, we present a method based on NMF tech-
nique to uncover fuzzy community structure in complex net-
works. As our tests have suggested, it is very natural that
some nodes should belong to more than one community.
These nodes may play a special role in a complex network
system. For example, in a biological network such as a pro-
tein interaction network, one node �protein or gene� belong-
ing to two functional modules may act as a bridge between
them which transfers biological information or acts as a mul-
tiple functional unit �13�. While the stable index proposed
here is simple, it can afford abundant information about the
organization of networks.

Although many community-detection algorithms have
been developed before in the field of complex networks, only
a few of them can detect “fuzzy” or “overlapping” commu-
nity structure �12–14�. The clique percolation method �CPM�
�13� detects communities based on a class of basic
elements—cliques. It is too restrictive and only a few com-
munities can be detected with many nodes excluded, espe-
cially in sparse networks �35�. The Potts model for fuzzy
community detection �12� is a random search procedure and
returns different assignments of nodes upon different initial
assignments. They repeat the algorithm many times and
combine the inconsistence of these assignments to form

fuzzy communities. The fuzzy clustering method �FCM�
used in our recent work �14� can only give a relative mem-
bership, while the new NMF method quantifies how much a
node belongs to a community and employs an absolute mem-
bership in an elaborate mathematical manner which is more
reasonable since it can reflect the absolute possibility that a
node belongs to a specific community. This point is some-
what related to the studies in Refs. �36,37�, in which they
defined two indexes to describe different roles of nodes ac-
cording to their pattern of within- and between-module con-
nections. Obviously, the quantification of the degree that a
node belongs to a community can be employed to do a simi-
lar study. Therefore though there have been many algorithms
for detecting community structure, clearly the method in this
paper can be a helpful complement to the existing ones.

We expect that this method will be employed with prom-
ising results in the detection of fuzzy communities in com-
plex networks with practical significance.
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